Distribution of Radiocarbon Ages in Soil Organic Matter by Thermal Fractionation

EES Authors
Publication Year
2013
Source
Radiocarbon
Abstract
Radiocarbon analysis is an important tool in quantifying soil organic matter (SOM) dynamics within the terrestrial carbon cycle. However, there is increasing appreciation that representing SOM as a single, homogeneous pool with a single, mean C-14 concentration is inadequate. We investigate whether the differing patterns in CO2 release during ramped-temperature oxidation reflect organic matter of different ages, and hypothesize that thermally labile SOM (combusting at low temperatures) consists of younger carbon than thermally resistant organic matter. Topsoil samples under contrasting land uses (native vegetation and long-term cultivation) were selected for C-14 analysis before and after acid fumigation for the removal of carbonates. Results of bulk C-14 analyses showed a significant shift in C-14 age from 0.944 Fm under native vegetation to 0.790 Fm under cultivation. Four to 5 "fractions" associated with different CO2-evolution regions were identified by thermal analysis and analyzed for C-14 via modifications to NOSAMS' established "programmed temperature pyrolysis system," in which discrete CO2 fractions evolved during ramped-temperature oxidation were isotopically characterized by a microwave gas ion source (GIS) continuous-flow AMS (CFAMS) system. Results showed that while acid fumigation removed soil carbonates, the treatment also significantly altered the thermograms and inferred SOM composition. While direct attribution of C-14 values to individual peaks is somewhat confounded by overlapping temperature ranges for oxidation of unique populations of carbon, in general, thermally stable fractions of SOM appear to be C-14-depleted compared to thermally reactive (low temperature) fractions regardless of pretreatment.
Research Track Category
Authors
Plante, A. F., Beaupre, S. R., Roberts, M. L., Baisden, T.