Cellular uptake and toxic effects of fine and ultrafine metal-sulfate particles in human A549 lung epithelial cells

EES Authors
Publication Year
2012
Source
Chemical Research in Toxicology
DOI
Abstract
Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station, fine crystals of PbSO4 (anglesite), ZnSO4·H2O (gunningite), and CaSO4 (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO4 and CaSO4 yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and EPR, was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO4, whereas only slight effects could be found for PbSO4. Moreover, changes of the cell cycle were observed for Zn sulfate and PbSO4. It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated JNK. During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO4 compared to the nonexposed cells was observed, and in our experiments, only one CaSO4 particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO4, the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be globally abundant. Therefore, our study is of direct relevance to populations living near such power plants.
Research Track Category
Authors
Könczöl M., Goldenberg E., Ebeling S., Schäfer B., Garcia-Käufer M., Gminski R., Grobéty B., Rothen-Rutishauser B., Merfort I., Gieré R., Mersch-Sundermann V.